Harmonic differential forms for pseudo-reflection groups I. Semi-invariants
نویسندگان
چکیده
We provide a type-independent construction of an explicit basis for the semi-invariant harmonic differential forms arbitrary pseudo-reflection group in characteristic zero. Equivalently, we completely describe structure χ-isotypic components corresponding super coinvariant algebras one commuting and anti-commuting set variables, all linear characters χ. In type A, verify specialization conjecture Zabrocki [37] which provides representation-theoretic model Delta Haglund–Remmel–Wilson [10]. Our “top-down” approach uses methods Cartan's exterior calculus is some sense dual to related work Solomon [29], Orlik–Solomon [21], Shepler [27], [28] describing (semi-)invariant forms.
منابع مشابه
Differential Invariants for Lie Pseudo-groups
Lie pseudo-groups, roughly speaking, are the infinite-dimensional counterparts of local Lie groups of transformations. Pseudo-groups were first studied systematically at the end of the 19th century by Sophus Lie, whose great insight in the subject was to postulate the additional condition that pseudo-group transformations form the general solution to a system of partial differential equations, ...
متن کاملPseudo–groups, Moving Frames, and Differential Invariants
We survey recent developments in the method of moving frames for infinite-dimensional Lie pseudo-groups. These include a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for pseudo-groups, and new algorithms, based on constructive commutative algebra, for establishing the structure of their differential invariant algebras.
متن کاملMoving Frames for Pseudo–Groups. II. Differential Invariants for Submanifolds
This paper is the second in a series that develops a theory of moving frames for pseudogroup actions. In this paper, we define a moving frame for free pseudo-group action on the submanifolds, illustrated by explicit examples. Our methods, based on the consequential moving frame connection, provides an effective means for explicitly determining complete systems of differential invariants and inv...
متن کاملMoving Frames and Differential Invariants for Lie Pseudo-groups
We survey a recent extension of the moving frames method for infinite-dimensional Lie pseudo-groups. Applications include a new, direct approach to the construction of Maurer–Cartan forms and their structure equations for pseudogroups, and new algorithms, based on constructive commutative algebra, for uncovering the structure of the algebra of differential invariants for pseudogroup actions.
متن کاملMoving Frames for Pseudo–Groups. I. The Maurer–Cartan Forms
This paper begins a series devoted to developing general and practical theory of moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part, we present a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for a pseudo-group. Our approach is completely explicit and avoids reliance on the theory of exterior d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2021
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2021.105474